Accelerated learning using Gaussian process models to predict static recrystallization in an Al–Mg alloy

نویسندگان

  • T J Sabin
  • P J Withers
چکیده

This paper describes an investigation into the suitability of Gaussian process models for predicting the microstructure evolution arising from static recrystallization. These methods have the advantage of not requiring a prior understanding of the micromechanical processes. They are wholly empirical and use a Bayesian framework to infer the probability distribution of data, given a ‘training set’ comprising observed outputs for known inputs. Given the evidence from the training set, they can make a prediction and assess its certainty, taking into account the noise in the data. In addition, non-uniform deformation geometries were chosen to provide the training data, both to approximate typical manufacturing processes with complex strain paths and to investigate whether learning could be accelerated by using only a small number of test samples containing a distribution of deformation histories. The model was trained and tested on data from samples of a cold-deformed and annealed aluminium–magnesium alloy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FRACTIONAL RECRYSTALLIZATION KINETICS IN DIRECTLY COLD ROLLED Al-Mg, Al-Mg-Sc AND Al-Mg-Sc-Zr ALLOY

The evaluation of texture as a function of recrystallization has been characterized for directly cold rolled Al-6Mg, Al-6Mg-0.4Sc and Al-6Mg-0.4Sc-0.2Zr alloys. Samples were annealed isothermally at 400 °C for 1 to 240 minutes to allow recrystallization. Recrystallization kinetics of the alloys is analyzed from the micro-hardness variation. Isothermally annealed samples of aluminum alloys were ...

متن کامل

Localized Recrystallization in Cast Al-Si-Mg Alloy During Solution Heat Treatment: Dilatometric and Calorimetric Studies

During heat treatment, the work piece experiences a range of heating rates depending upon the sizes and types of furnace. When the Al-Si-Mg cast alloy is heated to the solutionizing temperature , recrystallization takes place during the ramp-up stage. The effect of heating rate on recrystallization in the A356 (Al-Si-Mg) alloy was studied using dilatometric and calorimetric methods. Recrystalli...

متن کامل

PREDICTION OF STATIC SOFTENING OF MICROALLOYED STEEL BY THE INTEGRATION OF FINITE ELEMENT MODEL WITH PHYSICALLY BASED STATE VARIABLE MODEL

  Abstract   Recovery and recrystallization phenomena and effects of microalloying elements on these phenomena are of great importance in designing thermomechanical processes of microalloyed steels. Thus, understanding and modeling of microstructure evolution during hot deformation leads to optimize the processing conditions and to improve the product properties.   In this study, finite element...

متن کامل

Dynamic Recrystallization Behavior and Corrosion Resistance of a Dual-Phase Mg-Li Alloy

The hot deformation and dynamic recrystallization behavior of the dual-phase Mg-9Li-3Al-2Sr-2Y alloy had been investigated using a compression test. The typical dual-phase structure was observed, and average of grain size of as-homogenized alloy is about 110 µm. It mainly contains β-Li, α-Mg, Al₄Sr and Al₂Y phases. The dynamic recrystallization (DRX) kinetic was established based on an Avrami t...

متن کامل

Quasicrystal-reinforced Mg alloys

The formation of the icosahedral phase (I-phase) as a secondary solidification phase in Mg-Zn-Y and Mg-Zn-Al base systems provides useful advantages in designing high performance wrought magnesium alloys. The strengthening in two-phase composites (I-phase + α-Mg) can be explained by dispersion hardening due to the presence of I-phase particles and by the strong bonding property at the I-phase/m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000